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Abstract

In this overview paper, we review the basic princi-

ples of the method of space-time conservation ele-

ment and solution element for solving the conser-

vation laws in one and two spatial dimensions. The
present method is developed on the basis of local and

global flux conservation in a space-time domain, in
which space and time are treated in a unified man-

ner. In contrast to the modern upwind schemes,
the approach here does not use the Riemann solver

and the reconstruction procedure as the building

blocks. The drawbacks of the upwind approach,

such as the difficulty of rationally extending the 1D

scalar approach to systems of equations and par-
ticularly to multiple dimensions is here contrasted

with the uniformity and ease of generalization of the

CE/SE 1D scalar schemes to systems of equations
and to multiple spatial dimensions. The assured

compatibility with the simplest type of unstruc-

tured meshes, and the uniquely simple nonreflecting
boundary conditions of the present method are also

discussed. The present approach has yielded high-

resolution shocks, rarefaction waves, acoustic waves,

vortices, ZND detonation waves and shock/acoustic
waves/vortices interactions. Moreover, since no di-

rectional splitting is employed, numerical resolution

of two-dimensional calculations is comparable to
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that of the one-dimensional calculations. Some sam-

ple applications displaying the strengths and broad

applicability of the CE/SE method are reviewed.

Introduction

This paper provides an introductory overview of a

new numerical framework for solving conservation

laws, namely, the Method of Space-Time Conserva-

tion Element and Solution Element, or the CE/SE
method for short. The method has been developed

in the past few years by Chang and coworkers [1-
31]. This method was designed from scratch to be a

coherent framework, and is not an incremental im-

provement of a previously existing method. All the

numerical schemes obtained by application of this

method share the attributes of generality, accuracy

and simplicity. The method has been applied by

Chang and coworkers to obtain numerical schemes

for conservation laws in fluid dynamics. However,

the method could also be applied to other contin-
uum conservation laws, such as those encountered

in electromagnetics.

The CE/SE method is distinguished from other

methods by its very conceptual basis _ flux conser-

vation in space-time. The original reports described

the present method in a thorough and highly de-

tailed fashion. That is, starting from the basic inte-
gral equations, the algebraic details of the discretiza-

tion and the stability and error analyses were pre-

sented in a systematic way. One of the aims of this

overview is to provide the reader unfamiliar with the

CE/SE method with a gentler introduction to the

method. In this overview, following the treatment of



[11],theCE/SEmethodisdescribedin amoreintu-
itivemannerbyfocusingonthegeometricnatureof
its uniquespace-timediscretization.Thiswillgive
thereaderacompleteandsimpleconceptualdescrip-
tionof CE/SEalgorithmsin oneandmorespatial
dimensions.Foralgebraicdetailsoftheschemesand
numericalanalysisof their properties,thereaderis
referredto theoriginalpapers.Thegeometricde-
scriptionclarifiestheconceptualandalgorithmicdif-
ferencesbetweentheCE/SEmethodandtraditional
numericalmethodsforconservationlaws.Thishigh-
lightingof thesedifferencesis anotheraimof the
currentpaper.Thethird aimof thispaperis to re-
viewsomesamplenumericalresultsobtainedwith
CE/SEschemes,in orderto givethereadersome
indicationof theaccuracyandbroadapplicability
demonstratedalreadybythemethod.A fourthaim
is to providethereaderwithaCE/SEbibliography,
completeasof July 1998.

To persuade the reader of the advantages of the

CE/SE approach, the key features and principal suc-

cesses of the method will now be briefly listed. The

statements will be supported by the exposition in

later sections of the paper. Some distinguishing fea-

tures of the CE/SE method are • (i) Although the

differential form is also utilized, the main empha-

sis of the present method is on solving the inte-

gral form of the conservation equations in the space-

time domain. (ii) The conservation laws are recog-

nized as balances of space-time fluxes exiting space-
time regions. The present method was therefore de-

signed to conserve space-time flux locally and glob-

ally. Conventional 'conservative' schemes, however,

calculate spatial fluxes at an instant of time; they do
not recognize the importance of conservative treat-

ment of the temporal evolution. The space-time
flux perspective allows for truly conservative treat-

ment of moving boundaries and moving meshes. (iii)
The discretized equations obtained by the present

method are a faithful discrete counterpart of the

conservation laws, automatically reproducing the
key properties of the latter, such as characteristics-

related properties. For example, for isentropic flows,

the present method can be used to construct explicit

solvers that are non-dissipative (neutrally stable) for
all Courant numbers <1. Also, these solvers are

two-way time-marching schemes, i.e., each forward-
time-marching scheme can be inverted to become a

backward, time-marching scheme, which is also neu-

trally stable. In other words, the marching variables
at the (n-1)th time level can be determined in terms

of those at the nth time level. Thus, these solvers

reproduce the time-reversibility displayed by isen-

tropic initial-value flow problems arising from pure

convection phenomena. (iv) A staggered space-time

mesh is used, i.e., the spatial arrangement of the

mesh nodes at any time level is spatially staggered

relative to the arrangement at the previous time
level. This ensures that flow information at each

interface separating two conservation elements can

be evaluated without interpolation (e.g., averaging)
or extrapolation. In particular, no Riemann solver

is needed in calculating interfacial fluxes. (v) The

flow solution structure is not calculated through a
reconstruction procedure. Instead, the gradients of

flow variables are treated as independent unknowns,

and they are not influenced by the flow properties in
neighboring elements at the same time level. This is

in full compliance with the flow physics of the initial-

value problem. (vi) For flows in multiple spatial di-

mensions, no directional splitting is employed. The

two and three-dimensional spatial meshes employed

by the present method are built from triangles and
tetrahedrons, respectively. The CE/SE schemes in

two and three spatial dimensions are naturally for-
mulated on unstructured triangular and tetrahedral

meshes which are the most easily generated meshes

for complicated flow boundary geometries. (vii) The
explicit time-marching CE/SE algorithms for initial-

value and initial-boundary-value problems are easy
to vectorize and parallelize, in order to take ad-

vantage of advanced computer architectures. (viii)
The flux-based specification of the CE/SE schemes

give rise in a natural fashion to extremely simple

yet highly effective non-reflecting boundary condi-
tions. This is in contrast to the complexity of non-

reflecting boundary conditions necessary for tradi-
tional numerical methods.

Computer programs based on the CE/SE method
have been developed for calculating flows in one
and two spatial dimensions. Numerous results

were obtained [1-31], including various shock tube

problems, the ZND detonation waves, the implo-
sion and explosion problem, shocks over a forward-

facing step, acoustic waves, and shock/acoustic
wave interactions. The method can clearly resolve
shock/acoustic wave interactions wherein the differ-

ence of the magnitude between acoustic wave and

shock could be up to six orders. In two-dimensional

flows, the reflected shock is as crisp as the lead-

ing shock. From the evidence of these results, the

CE/SE method has proved to be a promising numer-
ical framework for solving fluid dynamics problems.

The remainder of the paper is organized as fol-
lows. In Sec. 2, we contrast the present perspective



of conservationof space-timefluxeswith _hetra-
ditionalfocuson conservationof spatialfluxes.A
newspace-timeintegralformof conservationlaws
will bedescribed.In Sec.3, wepresenttheCE/SE
methodfor solvingflowequationsin onespatialdi-
mension.In Secs.4 and5, theextensionsof the
CE/SEmethodin twoandthreespatialdimensions,
withoutdirectional-splitting,areillustrated.In Sec.
6, numericalexamplescalculatedby the present
methodareshown.Sec.7 has a summary and con-

cluding remarks.

2 Numerical Methods from

the Space-Time Perspective

Finite-Volume Conservative Dis-
cretization

The finite-volume method is the traditional numeri-

cal method that is conceptually closest to the present

method. Therefore, we begin this section with some

remarks regarding the basis and limitations of up-

wind finite volume discretizations. Historically, the
solution of conservation laws was first viewed as

being reducible to the solution of ordinary or par-

tial differential equations, with specified initial and

boundary conditions. As the development of nu-

merical methods for differential equations matured,
it was recognized that flux-conservative numerical

schemes were essential for the accurate computation
of flowfields with shocks and other embedded discon-

tinuities. This property of conservative differencing

was due to its mimicking of integral flux balances,
which are applicable to discontinuities. With the

early emphasis on steady state solutions, the conven-

tional finite volume methods for simulating conser-
vation laws were focused on spatial flux balance over

a fixed spatial domain. Modern upwind techniques
that stem from Godunov's scheme, and which fol-

low the projection-upwinding-evolution framework

described by van Leer [39, 40]. A particularly lu-

cid description of the modern upwind approach is

found in Huynh [41].

Consider conservation of any extensive property

with continuum distribution per unit volume u, and
spatial flux vector f. The differential form of the

conservation or transport law, which applies in the

absence of discontinuities of the solution and its gra-

dient, is
au -.

cg--t= -V-f, (2.1)

where V is the spatial gradient operator. It is this

differential form that is numerically approximated

by finite-difference techniques. Integrating Eq. (2.1)

over a fixed spatial volume V, and using Gauss' di-

vergence theorem to convert the volume integral on
the right-hand-side to a surface integral, we obtain

d'-t udV - - y . dS, (2.2)
(v)

where S(V) is the boundary of V, and d'S- dcr

with d_r and _, respectively, being the area and the
outward unit normal vector of a surface element on

S(V). Eq. (2.2) is the balance at a particular in-

stant of time between the spatial fluxes exiting a

finite spatial volume, and the time rate of change
of a quantity within the volume. The traditional
finite volume methods concentrate on the conserva-

tive evaluation of the right hand side of Eq. (2.2).
The left hand side of Eq. (2.2) is often discretized by

a finite difference method, such as the Runge Kutta
method. Thus, while the spatial fluxes are treated
in an integral sense, the flux of the solution in the

time direction is still treated in a differential man-

ner. This means that the balancing of fluxes occurs
only at discrete instants of time. The solution in be-

tween these instants will not in general display exact
balance of the numerical fluxes. This allows the nu-

merical solution to "leak away" as it evolves in time.

Thus energy and other quantities will generally not

be globally conserved in an evolving unsteady flow.

If we integrate Eq. (2.2) with respect to time, we
obtain

udV - - dt f . ds. (2.3)
t_ , (v)

Note that Eq. (2.3) is more fundamental than Eq.

(2.1), and applies even to discontinous solutions such
as shock waves and contact discontinuities. For

smooth solutions, Eq. (2.1) can be obtained from

Eq. (2.3) by application of Gauss' divergence theo-

rem to arbitrary volumes. Eq. (2.3) is indeed an in-

tegral form of the flux balances, and it is the starting
point for some finite-volume discretizations. How-

ever, even this form has a drawback, namely, that

the spatial volume V is unchanging in time. This

fact, coupled with a spatial (rather than space-time)

perspective on flux conservation, means that in the

finite-volume context, Eq. (2.3) is generally applied
to a spatial mesh that is the same at successive time



levels.Thesamekindof mesh is used also when the

left-hand side of Eq. (2.2) is treated by Runge-Kutta
integration, or other such method. This awkward

space-time mesh arrangement evolved from the lim-

ited viewpoint of considering conservation of only

the spatial fluxes. As will be shown next, it leads
to the necessity of averaging fluxes at interfaces be-

tween cells, which is in turn the source of much com-

plexity and difficulty.

As shown in Fig. 2.1(a), due to the fixed spatial

domain assumed in Eq. (2.3), the shape of the space-

time Conservation Elements (CEs) in one spatial di-

mension must be rectangular. In addition, because
of the limited spatial perspective of the mesh in most

discretizations, these elements are generally stacked

exactly on top of each other in the time direction,
i.e., no staggering of these elements in time is used.

If Eq. (2.2) is used instead, the spatial CEs are just

the horizontal line segments in Fig. 2.1(a). For equa-

tions in two spatial dimensions, as depicted in Fig.
2.1(b), a conservation element is a uniform-cross-

section cylinder in space-time, and again no stagger-
ing in time is employed. This arrangement results in
vertical interfaces extended in the direction of time

evolution between adjacent CEs. Across these inter-

faces, flow property information from the previous

time level travels in both directions. Therefore, in
calculating the interfacial flux which is needed to

balance fluxes for the CEs, two values of the interfa-

cial flux are obtained, one from each of the two CEs

which share the interface. To reconcile these two val-

ues and obtain a unique value of the interfacial flux,
some form of averaging becomes necessary. A sim-
ple arithmetic averaging of fluxes leads to a central-

difference approximation of the spatial derivatives.

In modern high-resolution schemes, to better model

the flow of information, the averaging is accom-

plished by upwind biasing (or a Riemann solver).

However, this upwind biasing, termed flux-splitting
for systems of equations, is based on the Method

of Characteristics, which is valid only for smooth
solutions and does not apply to solution discontinu-

ities suchJas shocks. Further, for flows in multiple

spatial dimensions, directional splitting is used to

implement one-dimensional characteristic flux split-
ting. This practice causes deterioration of numeri-

cal resolution and difficulties in solving conservation

laws with source terms, because source terms have
no preferred direction.

We mention here that besides the need for the

averaging of fluxes at interfaces, there are other

sources of complexity and difficulty in the conven-

tional fixdte-volume approach. One such source is

that typically the unknowns in the discretized solu-

tion are just the values of the solution at the mesh

points. At any mesh point, the numerical approxi-
mations to the flow gradients, which are needed for

higher accuracy, must be recovered using the dis-

cretized solution at the mesh point and the neighbor-

ing mesh points. This procedure is termed projec-

tion or reconstruction, and is normally accomplished

by fitting a polynomial to the solution at neighboring
mesh points. In the vicinity of shocks, however, this
results in spatial oscillations in the solution. This

problem is addressed through the use of complex
flux-limiting strategies, such as Total Variation Di-

minishing and Essentially Non-Oscillatory schemes,

etc., which use some non-general properties of sim-
ple shock waves.

Schemes that use a staggered space-time mesh, of

course, date back to such classical schemes as the

Leapfrog scheme, which latter scheme in actuality
computes two decoupled staggered-mesh solutions.

In general, they are not currently favored by the
CFD community. However, we point out that there
are some staggered space-time mesh schemes devel-

oped prior to the current work, which continue to

be researched. Sanders [47] and Sanders and Weiser

([48], [49]) developed a staggered mesh scheme.

However, they did not gain the potential benefit of

avoiding upwinding, because they used the method

of characteristics as part of their solution procedure.

Nessyahu and Tadmor [46] also developed a stag-
gered mesh scheme. However, they did not treat
the flow gradients as independent unknowns at the

mesh point, and were thus led to reconstructive pro-

cedures. Both the preceding schemes are dissipa-
tive and therefore irreversible. The present method

was developed independently in a different frame-

work by Chang and coworkers, without knowledge of

the schemes of Sanders and Weiser, or of Nessyahu
and Tadmor.

Space-Time Integral Form of the

Governing Equations

We now present the space-time integral form of the

governing equations that is the starting point for the

CE/SE method. For ease of exposition, we will deal

with the one-dimensional Euler equations. The one-

dimensional unsteady Euler equations of a perfect
gas can be expressed as

U_ + F_ = 0, (2.4)



where

(ul)U = u2 - pv , (2.5)
u3 pE

F - f2 = PV 2 + p , (2.6)
.I'3 (pE + p)v

with p, v, p, and E being the density, velocity, static

pressure, and specific total energy, respectively. By
definition, E = v2/2 + e, where e is the specific in-

ternal energy. The equation of state is p = (7- 1)pe
with 7 being the specific heat ratio.

As shown in Fig. 2.2, let xl = x, and x2 - t
be the coordinates of a two-dimensional Euclidean

space E2. Then Eq. (2.4) can be expressed as the
divergence-free conditions

V "hm - 0, m - 1, 2, 3, (2.7)

where V here denotes the space-time gradient oper-
ator (O/Ox, O/Ot), and f_m - (fro, Urn), m = 1,2, 3,

are the space-time mass, momentum, and energy

current-density vectors, respectively. Equation (2.7)
is valid everywhere in E2 for continuous and isen-

tropic flow solutions. For flows with shock waves,
we must use the more fundamental form of the con-
servation laws:

(R) h,n • ds = 0, m = 1, 2, 3. (2.8)

Here S(R) is the boundary of a space-time region

R, and ds- dcr _ with d_r and 17, respectively, be-
ing the area and the outward unit normal vector

of a surface element on S(R). Note that (i) because

hm_..ds is the space-time flux of h,n leaving R through

ds, Eq. (2.8) simply states that the total space-time

flux of hm leaving R through its boundary vanishes;
(ii) all mathematical operations can be carried out

as though E2 were an ordinary two-dimensional Eu-

clidean space; and (iii) Eq. (2.7) is valid only for

smooth flows, and it can be derived from Eq. (2.8)
using Gauss' divergence theorem. Since it places no

constraint on the shape of the CEs in the space-time
domain, Eq. (2.8) is more general than the usual

mathematical statement of a conservation law, as

typified by Eq. (2.2) or Eq. (2.3). Eq. (2.8) is the

space-time integral form that is numerically approxi-
mated in the CE/SE method. For the CEs as defined

in CE/SE schemes to date, Eq. (2.3) suffices. How-

ever, an alternate derivation of 1D CE/SE schemes

requires the use of Eq. (2.8). The form Eq. (2.8) is
also essential for the oblique cylinder CEs that will

arise when the CE/SE method is applied to mov-

ing boundary or moving mesh problems. Also, the

space-time perspective inherent in Eq. (2.8) frees
up the researcher to visualize spatial meshes that

are not stacked directly one on top of another in the

time direction, but are instead spatially staggered
relative to previous time levels.

2.3 An Ideal Numerical Analogue

A smooth solution to the Euler equations, Eq. (2.4),

has the following important properties" (i) it does

not dissipate with time; (ii) its value at any point
(x, t) has a finite domain of dependence at an earlier

time; and (iii) it is completely determined by the
initial data at a given time. In the light of these

properties, we remark that (i) a solution to a dis-

sipative numerical scheme will dissipate with time;

(ii) the value of a solution to an implicit scheme at
any point (x,t) depends on all the initial data and

all the boundary data up to the time t; and (iii) a

scheme involving more than two time levels requires
the specification of the initial data at more than one

time level. Therefore, we conclude that an ideal nu-

merical analogue to Eq. (2.4) should be neutrally
stable, explicit, and involving only two time levels.

By adding an artificial dissipation term to intro-

duce irreversibility, an ideal solver of Eq. (2.4) can
be extended to model flows with shocks. We want

to emphasize that the artificial dissipation in an

ideal numerical method should occur only in shock

capturing; without added artificial damping, there

should be no other source of numerical dissipation.

Furthermore, in an ideal Navier Stokes solver, the
above guidelines of modeling the Euler equations
should be applied to the discretization of the con-

vective terms of the Navier Stokes equations. We

note that, stripped of any added artificial terms, tra-
ditional numerical schemes are in general not free

from inherent numerical dissipation. For flows at

large Reynolds numbers, numerical dissipation may

overwhelm the physical dissipation and cause a com-
plete distortion of the solution. Because an ideal

analogue of Eq. (2.4) has no numerical dissipation,
when it is applied to discretize the convective terms

of the Navier Stokes equations, the Navier-Stokes

solver has the property that the numerical dissipa-
tion of its solutions approaches zero as the physical
dissipation approaches zero.



3 The CE/SE Method in One
Spatial Dimension

By comparison with modern upwind finite-volume

methods for hyperbolic equations, the following dis-
tinguishing features of the CE/SE method result in

a simpler and more consistent numerical flow model"
(i) A space-time discretization is chosen for the flux

conservation such that there is no Riemann problem

to be solved at the cell interface. (ii) To avoid impos-
ing predetermined constraints on the flow solutions

such as monotonicity and TVD, the flow properties
and their gradients are treated as unknowns. For

smooth flows, the unknowns are completely deter-
mined by flux conservation, and the resultant nu-

merical procedure can march forward and backward

in time. (iii) For flows with shocks, an adjustable

artificial damping is added to the discretized equa-
tions such that the numerical entropy condition is
satisfied.

3.1 Preliminaries

For simplicity, we develop the CE/SE Euler solver

on a uniform staggered space-time mesh. In Fig. 3.1,

we illustrate the nodes, denoted by dots (filled cir-

cles), where the unknowns are located. The space
and time intervals between neighboring nodal lines

are respectively denoted by Az/2 and At/2. Note

that the spatial interval between nodes at a given
time level is denoted by Az. The reason for the no-

tation At/2 for the interval between successive time

levels is to emphasize that on this staggered space-

time mesh, it takes two half-time-steps to return to
the origifial spatial node locations. There is a Solu-

tion Element (SE) associated with each node (j, n).
Let the SE(j, n) be the interior of the space-time re-

gion bounded by a dashed line depicted in Fig. 3.2.

It includes a horizontal line segment, a vertical line

segment, and their immediate neighborhood. Be-
tween SEs, discontinuities are allowed. For the Eu-

let equations, Eq. (2.4), which have no source terms,
the actual size of the neighborhood does not matter.

Within a SE, the flow property vector U and

the flux vector F are approximated by their dis-

cretized counterparts U* and F*. Since a second-

order scheme is desired, piecewise linear functions of

space and time U* and F* are assumed. For (z,t)
in SE(j, n), we assume that

U*(x,t;j,n) -

and

+ _ (t - t-) (3.1)

F*(z,t;j,n) =

+ - + (t - t'). (3.2)

This is the Taylor polynomial of degree one within

each element, and the expansion coefficients U_,
etc., are the column matrices of unknown constants

to be determined for each SE(j, n). F_ is the column
matrix F (which is a function of U) evaluated with
U=U_.

The expansion coefficients ,(U,_"n,_,,(F__)jn and (F,)7
in Eqs. (3.1) and (3.2) will be expressed as functions

of the independent unknowns U7 and (U_)_. of the
present scheme as follows:

and

(F_)_ - A 7 (U=)_, (3.3)

n -.. F
(Vt)j --( z)j , (3.4)

n nu n(Ft)j- Aj (t)j. (3.5)

Here (i) A_ is the Jacobian matrix A = OF/c_U

(which is a function of U) evaluated with U = U_,
and (ii) Eqs. (3.3), (3.5) and (3.4) are the numerical

analogues of the chain-rule relations Fx - AU_ ,

Ft = AUt and the differential equation, Eq. (2.4),
respectively. Furthermore, because the space-time
flux vectors hm = (fro,Urn), m = 1,2,3, we shall

assume that for m = 1, 2, 3,

h_n(Z,t;j,n)- (fm(x,t;j,n),u_(x,t;j,n)), (3.6)

* and f,_, m = 1,2,3, are the componentswhere u m

of the column matrices U* and F*, respectively.

At this juncture, note that hereafter, the compo-
U nnents of the column matrices U n. ( _)j, (Ut)j ,n Fin

F n r, . J) )

( z)j and (Ft)j, wall be denoted by (Um)_., (Um_)_.,

(Umt)_, (fm)_, (fmz)_ and (fmt)'_, m = 1,2,3, re-
spectively.

3.2 Discretization of Space-Time
Conservation Laws

For smooth flows, the calculations of U_ and (U_)7
are determined by requiring fluxes to be conserved

over space-time Conservation Elements (CEs). As

depicted in Figs. 3.3(a) and 3.3(b), two CEs, de-

noted by CE_(j, n) and CE+(j, n), are associated

with every mesh point (j, n). A glance over Figs. 3.1,



3.2,and3.3revealsthat thesetofCE+(j,n) over all

mesh points (j, n) do not overlap among themselves
and can fill the entire space-time computational do-
main.

For each (j, n), the following discrete analogues

to the space-time flux conservation, Eq. (2.8), are
imposed:

(CE_(j,,)) hrn "ds -- 0, m - 1, 2, 3, (3.7)

and

h_n.ds-O, m-1 2, 3. (3.8)
(c_+(j,n))

According to Figs. 3.2, 3.3a, and 3.3b, we have

the following observations: (i) The edges _ and

CO of CE_(j,n) lie in SE(j- 1/2, n- 1/2); (ii)

The edges _'B and A'-'D of CE_(j, n) lie in SE(j, n);

(iii) The edges _ and Z--ff of CE+(j,n) lie in
SE(j + 1/2, n- 1/2); (iv) The edges _ and _ of

CE+(j, n) lie in SE(j, n). As a result, with the aid

of the numerical counterpart of Eq. (2.8), and Eqs.

(3.1)-(3.6), we conclude that Eq. (3.7)leads to three

relations (one for each m) involving the independent
n U n Un-1/2 _n-1/2unknowns Uj, ( _)j, j-1/2, (Uz and Eq.]j-l/2'

(3.8) leads to another three relations, involving U_,
n n-l/2 n-l/2

(Ux)j, Uj+I/2, and (Ux)j+l/2. Assuming that the
unknowns at the mesh points (j- 1/2, n- 1/2) and

(j+ 1/2, n- 1/2) are given, the six components of U_
and (Ux)_ can be determined by the above six rela-

tions. It will be shown next how U_ and (Ux)_ can
be determined from these relations without needing
to solve any nonlinear algebraic equations.

Note that the space-time flux of h* leaving

CE_(j, n) through A'D and that leaving CE+(j, n)

through _ are evaluated using the same unknowns,

i.e., U)* and (Ux) 2. Thus, these two space-time

fluxes are each the negative of the other. As a result,

a combination of Eq. (3.7) and Eq. (3.8) imply that

(CE(j,n)) h_n "ds -- O, m - 1, 2, 3, (3.9)

where CE(j,n) (see Fig. 3.3(c)) is the union of

CE_(j, n) and CE+(j, n). Thus, the CE(j, n) are

also conservation elements for the scheme. Here, as

explained above, the fluxes of h_n leaving CE(j, n)
through CD, CB, E--D, and E-F can be evaluated in

un-l/2 _n-1/2
terms of j+l/2 and (Uz Further, it can be]j4-1/2 "

shown that the fluxof h_ leavingCE(j, n) through

BF issimply (um)_Ax. (This would not be true

on a nonuniform spatial mesh, but a small modifica-

tion of the method, not described here, allows one to

similarly avoid solving any nonlinear algebraic equa-
tions.) Thus, Eq. (3.9), which is a combination of

Eqs. (3.7) and (3.8), implies that U_ can be deter-

mined explicitly in terms ofUn-1/2j+l/2and (vxjj+l/2.Tr _n-1/2

After obtaining U_, F_ and A_ can be determined

because they are functions of U_ only. As a re-

sult, by applying either Eq. (3.7) or Eq. (3.8) (only

one of these two equations is independent after Eq.
(3.9) is used), one can obtain a system of three linear

equations with the three unknowns being the three
Ucomponents of ( x)j. In other words, (U_)_ can be

n Un-1/2 ,tn-1/2determined in terms of Uj j±l/_, and (U_' ]i4.1/2

by solving either Eq. (3.7)or Eq. (3.8).

Special Features of the CE/SE

Method for Isentropic Flows

It has been shown by numerical experiments that
the present scheme is neutrally stable in the inte-

rior of the computational domain up to at least a

thousand time steps when the Courant number does

not exceed unity. As a matter of fact, by using an
analysis similar to that given at the end of Sec. 6
in [6], one can show that the linearized form of the

present numerical analogue is neutrally stable when

the Courant number does not exceed unity. Thus,
the scheme described above is non-dissipative when

the Courant number does not exceed unity. This has
been shown in [2] to result from the fact that the nu-

merical scheme shares with the Euler equations the

property of being invariant under space-time inver-

sion. The present scheme also meets the require-

ments of an ideal numerical analogue set forth in

Sec. 2.3, i.e., it should be neutrally stable, explicit,
and involving only two time levels.

From the previous development, it can be deduced

that the numerical scheme observes a global conser-

vation condition that is a direct result of Eq. (3.9),
i.e., for any space-time region that is the union of

any combination of the CEs of the type depicted in

Fig. 3.3(c), the total flux of h_n, m - 1, 2, 3, leaving
its boundary vanishes. Thus, the CE/SE scheme en-
forces global conservation of the numerical fluxes in

both time and space.

The fluxes are uniquely defined at the boundaries

of each CE. Each segment of the boundary of a CE

lies in one and only one SE. This is made possible by
the spatial staggering of the mesh points at one half-



time-levelrelativetothoseattheprevioushalf-time-
level.Theconceptionof thisstaggeredarrangement
wasin turn facilitatedby the unifiedspace-time
viewpointemployedin the CE/SEmethod.This
featureof uniquedefinitionof theinterfacialfluxes
allowsusto avoidtheneedforupwindorotheraver-
agingof thefluxesat theinterfaces.Thustheneed
for anexactor approximateRiemannsolverdoes
not arise.Theflowof informationbetweenSEsis
containedwithintheconservationlawitself.

TheCE/SEschemedoesnot requirea flowgra-
dientreconstructionstrategy,forthesimplereason
that theflowgradientsarethemselvestreatedas
unknowns,andaredetermined,togetherwith the
flowsolutionitself,fromthediscretizedconservation
equations,Eqs.(3.8)and(3.9).Nounnecessaryas-
sumptionofsmoothnessofthesolutionbetweenSEs
is madein theEulerisentropic-flowscheme,when
calculatingeithertheflowvariablesor theflowgra-
dients.Whileconventionalfinite-volumetechniques
alsoallowfor theflowvariablesto bediscontinuous,
by usingconservationto link cells,theydoassume
continuityoftheflowwhenreconstructingthegradi-
entandwhenusingupwindbiasingto calculatethe
interfacialfluxes.Contrarily,in theCE/SEscheme,
nosuchassumptionsarerequired,andconsequently
nocomplexflux-limiterstrategyisneeded.In some
finite-elementschemes,evenmoreconstrainingas-
sumptionsofsolutionsmoothnessaremade;theso-
lution itselfis takento becontinuousbetweencells
bychoosingto placesingle-valuedsolutionnodeson
theinterfacesofcells.

3.4 The Shock-Capturing Scheme

The above marching scheme for isentropic flows can
be expressed as

W=
H (IT "-1/_ TT'_-_/2 ITT _'_-_/_ ¢TT _n-1/2'_

_,"j-1/2' "j+l/2,_,"'x/j_l/2,_,.-'xlj+l/2 _] , (3.10)

and

(U_) ." -
3 --

(TT_-_/2 TT"-_/2 CTT_,_-_/2 (U_).-_/2_
H_ \"j-1/2, ".i+1/2 , ,,'.'xJj_l/2 , j+1/2 ] (3.11)

Here H and H_ are column-matrix functions. Their

explicit forms can be obtained from Eqs. (5.20)-

(5.29) in [6] with the assumption that the viscosity

/_ - 0. In the construction of the shock-capturing

scheme, the local conservation condition, Eq, (3.9),

is again assumed. Because Eq. (3.10) follows directly

from Eq. (3.9), the former is incorporated into the

shock-capturing scheme without modification. As
TT n-I/2 I'TT _n-I/2

a.result given the same. "j+1/2 and
_.,..,x/j4.1/2 _

the shock-capturing scheme shares with the non-

dissipative scheme the same zero-order terms on the

right sides of Eqs. (3.1) and (3.2) In addition, the

shock-capturing scheme also observes a global con-

servation condition that is also a direct result of Eq.
(3.9).

The shock-capturing scheme is obtained by mod-
ifying Eq. (3.11). To proceed, let

, n Tln_l/2 At _-1/2
(U)j±l/_ = "_j±1/2 + -_(Ut (3 12),'j4-1/2,

i.e., (U')j_I/2 is a first-order Taylor's approximation

of U at the point (j + 1/2, n). Thus,

(u )7 =
Az (3.13)

is a central-difference approximation of U_ at the

mesh point (j, n). In the shock-capturing scheme,
Eq. (3.11) is replaced by

(U_)." H _ _ ": = (1 - 2¢)( _)¢ + 2¢(U_)_, (3.14)

where (H_)_ denotes the expression on the right
side of Eq. (3.11), and c is a real number. Note

that (U_)_ is defined in terms of a central-difference

approximation. Generally, numerical dissipation is

introduced as a result of using such an approxi-

mation. On the other hand, (H_)_ represents the

solution from a non-dissipative scheme. The right

side of Eq. (3.14) is a weighted averaged of (Hx)_
and (U_)_ with the weight factor of 1- 2e and 2e,

respectively. Therefore, one may heuristically con-
clude that the numerical dissipation associated with

the shock-capturing scheme can be increased by in-

creasing the value of e. This conclusion is verified by

numerical experiments. As shown in [6], the stabil-
ity domain of the shock-capturing scheme is defined
by

CFL<I and 0<c<l, (3.15)

where CFL is the maximum Courant number. Note

that Eq. (3.14) can also be expressed as

(U_)_ -- (Hz)_ + 2c(DU)_, (3.16)

or

where

C n( z)j - (U_) + (2e- 1)(DU)_,

n H n.(DU)_ -(U:)j -( _)j

(3.17)

(3.18)



Accordingto Eq. (3.16), (U=)_'for the shock-
capturingschemeis thesumof thenon-dissipative
term(H=)_andthedissipativeterm2e(DU)n. The

latter provides the necessary entropy-increasing con-

dition within the stability domain defined by Eq.

(3.15). Also it is seen from Eqs. (3.16) and (3.17)

that (U=)_ reduces to (H=)_ and (U_)_ in the cases
of e = 0 and e = 0.5, respectively.

The shock-capturing scheme described above gen-

erally can capture shocks with high resolution and
without generating substantial numerical oscilla-

tions near shock if 0.3 < e < 0.8. To further damp

out these oscillations, (U_)_in Eq. (3.17) (which is
equivalent to Eq. (3.14)) can be modified using a

simple slope-limiting procedure [6]. Let

I r_ . _ n

(u_)" - ±(u )_/2 u_
3 Ax/2 " (3.19)

# n n

Because (U)j±1/2 and Uj are the numerical ana-

logues of U at the mesh points (j-l-l/2, n)and (j, n),
respectively, (U=+) n. and (U=)n. are two numerical

3 -3

analogues of U= at the mesh point (j, n), with one

being evaluated from the right and another from the

left. It follows from Eqs. (3.13) and (3.19) that

n 1 ).n .(u_)j - _ [(u_+, + (u__)_], (3.20)
• C r_ r__.e., (u_)_ i_ th_ simpl_ _ve_g_ of (U_+)_ _nd
(U,_)_. A nonlinear weighting function is defined
as

w(=_, =+;_)- I=+i_=- + !=-!_=+
i=+i_ + i=_1_ (3.21)

where z_, z+, and c_ are real variables with

lz+l + lz-I > 0 and c_ > 0. Note that (i)

W(z_, z+; 0) is the simple average ofx_and z+, and
(ii) W(z_,z+; 1) and W(x_,z+; 2) are used in the

slope-limiters proposed by van Leer [40] and van AI-
bada et hi. [50], respectively.

Recall that (urn=+)_ denotes the m-th component
of (V=±)_. Let

("_)7 - w [(.__)7, ("_+)7,-] (3.22)
Then, as shown in [6], numerical oscillations near

shocks can be suppressed very efficiently if (U_)_ in
Eq. (3.17) is replaced by (U[)_, i.e., the column
matrix formed by (ur_=)_, m- 1, 2, 3, if c_ > 1.

3.5 Concluding Remarks

We conclude this section on the CE/SE method in

1D by mentioning that 1D CE/SE explicit solvers

have been developed for the scalar advection equa-
tion (with and without controllable added numerical

dissipation), and for the scalar advection-diffusion

equation. Corresponding schemes have been formu-

lated for the Euler and Navier-Stokes equations. The
Euler schemes were described in this section. Im-

plicit schemes have also been formulated for the 1D

advection-diffusion equation. The various schemes

for the scalar equations have been thoroughly anal-
ysed for their accuracy and stability properties, see

[6] and [S]. Surprisingly, various limiting cases of the

1D scalar schemes turn out to have amplification
factors matching those of several classical numeri-

cal schemes, viz., the Leapfrog, Lax, DuFort-Frankel
and Crank-Nicolson schemes.

The numerical boundary conditions have not been

discussed in this paper. The boundary conditions

used to date have been both simple and effective.

The flux-based nature of the method allows, in par-

ticular, the use of extremely simple yet robust non-

reflecting boundary conditions [12]. The efficacy of
these non-reflecting boundary conditions is demon-

strated in some of the numerical examples in this

paper. Further research is under way on boundary

conditions for the CE/SE schemes.

4 The 2D Euler Solvers

In Sec. 3, it was established that in the 1D case

there were only two sets of independent marching

variables, i.e.,(i)(um)_,m= 1,2, 3, and (ii) (u(,__i ,m = 1, 2, 3, at each mesh point (j, n), if Eqs. . -

(3.6) are assumed. As a result, it requires two sets of

conservation conditions, i.e., Eqs. (3.7) and (3.8)to
construct the 1D non-dissipative Euler scheme. As

a prerequisite to Eqs. (3.7) and (3.8), two CEs, i.e.,
CE_(j, n) and CE+(j, n) are defined for each mesh

point (j, n).

The 2D CE/SE non-dissipative Euler solver [5, 7]

was constructed using the same set of design princi-

ples that was used to construct its 1D counterpart.
The differences between them stem entirely from the

fact that there is one more spatial dimension to be

co,nsidered in the 2D solver. In this section, only the
basic geometric structures of the 2D solver will be

described. For other details, the reader is referred

to [5].

The 2D unsteady Euler equations of a perfect gas
[5, 7] consist of four independent equations, m = 1,



2,3, 4, insteadof thethree equations applicable to

1D flow. Also, in the 2D case, there are two spatial

components of the gradient of each urn (i.e., um_
and Umy, where x and y are Cartesian coordinates

for the 2D space). This is in contrast to the 1D

case, in which, for each urn, there is only one spatial

component of the gradient of Urn (i.e., Umx).

In the development of the 2D non-dissipative Eu-

let solver and its extensions [5], a set of equations

that is a natural 2D extension of Eqs. (3.1)-(3.6)is

assumed. As a result, there are three sets of indepen-

dent marching variables at each mesh point (j, k, n)
(see Figs. 4.1 and 4.2 for the locations of the mesh

points. The reader is referred to [5, 7] for the defini-

tions of the spatial mesh indices j and k of the uni-

form structured triangular mesh of Fig. 4.1). They
n n n

are (um)j,k, (um_)j,k and (umy)j,k ,m = 1, 2, 3, 4.
It follows that it requires three sets of conservation

conditions (each set comprises four conditions, cor-

responding to m - 1, 2, 3, 4) at each mesh point to

construct the 2D non-dissipative solver. Therefore,
as a prerequisite, one must define three conservation

elements for each mesh point. The construction of

these CEs, which is the most intriguing part of the

development of the 2D CE/SE Euler solver, will be

described in what immediately follows.

Consider a spatial domain formed by congruent

triangles (see Fig. 4.1). The center of each triangle
is marked by either an empty circle or a filled circle.

The distribution of these empty and filled circles is

such that if the center of a triangle is marked by a
filled (empty) circle, then the centers of the three

neighboring triangles with which the first triangle

shares a side are marked by empty (filled) circles.

As an example, point G, the center of the triangle

ABDF, is marked by a filled circle while points A, C
and E, the centers of the triangles ABFM, ABJD

and ADLF, respectively, are marked by empty cir-
cles. These centers are the spatial projections of the

space-time mesh points used in the 2D solver [5, 7].

To specify the exact locations of the mesh points

in space-time, one must also specify their temporal

coordinates. In the 2D CE/SE development, again
we assume that the mesh points are located at the

time levels n - 0, 4-1/2, 4-1, 4-3/2, ..., with t -

n At at the nth time level. Furthermore, we assume

that the spatial projections of the mesh points at a

whole-integer (half-integer) time level are the points

marked by empty (filled) circles in Fig. 4.1.

Let the triangles depicted in Fig. 4.1 lie on the

time level n - 0. Then those points marked by

empty circles are the mesh points at this time level.

On the other hand, those points marked by filled
circles are not the mesh points at the time level n =

0. They are only the spatial projections of the mesh

points at half-integer time levels. Thus the 2D space-

time mesh is, as in the 1D case, a staggered mesh.

Points A, C and E, which are depicted in Figs. 4.1
and 4.2, are three mesh points at the time level n =

0. Point G _, which is depicted in Fig. 4.2, is a mesh

point at the time level n - 1/2. Its spatial projection

at the time level n = 0 is point G. Because point G

is not a mesh point, it is not marked by a filled circle

in the space-time plot given in Fig. 4.2. Hereafter,

only a mesh point, e.g., point G _, will be marked by

a filled or empty circle in a space-time plot.

The conservation elements associated with point

G _ are defined to be the space-time quadrilateral

cylinders GFABG'F_A'B _, GBCDG'B'C'D', and

GDEFG'DtE_F _ that are depicted in Fig. 4.2. Here
(i) points B, D and F are the vertices of the trian-

gle with point G being its center (centroid) (see also
Fig. 4.1), and (ii) points A', B', C', D', E' and F'

are on the time level n - 1/2 with their spatial pro-

jections on the time level n = 0 being points A, B,
C, D, E and F, respectively.

Recall that, in the development of the 1D non-

dissipative Euler solver, a pair of diagonally oppo-

site vertices of each CEa-(j, n) (see Figs. 3.3(a) and
(b)) are assigned as mesh points. Furthermore, the

boundary of each CE±(j, n) is a subset of the union

of the SEs associated with the two diagonally oppo-

site mesh points of this CE. In the 2D development,

as seen from Figs. 4.2, two diagonally opposite ver-

tices of each CE are also assigned as mesh points.
In the following, we shall define the SEs such that

even in the 2D case, the boundary of a CE is again
a subset of the union of the SEs associated with the

two diagonally opposite mesh points of this CE.

As an example, the SE associated with

point G' is depicted in Fig. 4.3. It is the

union of three vertical rectangles (i.e., G"B"BG,

G"D"DG and G"F"FG), a horizontal hexagon (i.e.,
A_B_C_D'E_F') and their immediate neighborhood.
Note that points G", B", D" and F" are on the time

level n = 1 and their spatial projections on the time

level n = 0 are points G, B, D and F, respectively.

The definition of the SE of any mesh point is similar
to the definition of the SE of the point G _. Note that

on the uniform structured mesh shown, the SEs and

CEs at the whole integer time levels can be seen to

be congruent to the SEs and CEs respectively at the
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half integer time levels, by a rotation of 180 degrees
about the time axis followed by spatial and temporal
translations.

As depicted in Fig. 4.2, one of the CEs associated

with point G' is the space-time quadrilateral cylin-

der GFABG_F_A'B '. Among the vertices of this

CE, only points A and G _ are mesh points. From

Figs. 4.3, it is seen that (i) three of the faces of this
CE, i.e., GBG_B ', GGIF'F and G_FIAIB t are sub-

sets of the SE of point G _, and (ii) the other three
faces, i.e., AA'F_F, ABB'A' and ABGF are sub-

sets of the SE of point A. As a result, by assuming
that the flux of each _tm (m = 1, 2, 3, 4)is con-

served over this CE, one can impose four conditions

involving only the independent marching variables

at the mesh points A and G'. Similarly, by using
the flux conservation conditions over the other two

CEs associated with point G _, one can obtain eight
other conditions that relate the independent march-

ing variables at the mesh points G _, C and E. Using
the above 12 conditions, the 12 independent march-

ing variables, i.e., urn, Um_ and umy, m- 1, 2, 3,
4, at the mesh point G _ can be determined in terms

of the independent marching variables at the mesh

points A, C and E. By considering the mesh point
G _ as a typical mesh point, the reader can under-

stand how the 2D non-dissipative Euler solver was

constructed [5, 7].

The non-dissipative Euler solver is only one of sev-

eral 2D solvers described in [5, 7]. The latter docu-
ment includes the 2D extensions of all but one of the

1D solvers described in [6]. The only exception is the

2D extension of the 1D Navier-Stokes solver. This is

under development, and will be dealt with in a sep-

arate paper. Also, because of the similarity in their
design, each of the 2D extensions shares with its 1D

version virtually the same fundamental characteris-

tics. As an example, the 2D non-dissipative Euler

solver is neutrally stable, explicit, and involves only

two time levels during a single time step. It also pre-

serves the forward-backward marching nature and
the space-time inversion invariance property of the

2D unsteady Euler equations. These are the same

properties that characterize the 1D non-dissipative
Euler solver.

The discussion of the 2D Euler solvers is concluded

with the following remarks:

1. Because (i) the spatial geometric structure em-

bedded in the CE/SE 2D space-time mesh is

constructed from triangles, and (ii) triangles

are the simplest polygon in the 2D space, the

CE/SE solvers described in [5] can easily be

modified and extended to solve flow problems

with complex geometries using unstructured tri-

angular spatial meshes[31].

2. Several 2D CE/SE solvers using nonuniform

mesh have been developed [22-29]. Some of the

numerical results generated with these solvers
will be presented in Sec. 6.

3. The extension of the non-dissipative Euler

solver to become a shock-capturing scheme by

the addition of controllable numerical dissipa-
tion is a straightforward extension of the devel-

opment in Eqs. (3.10)- (3.22).

4. The non-reflecting boundary conditions men-

tioned in the previous section have also easily

been extended (e.g., [13, 30]) to the 2D case,
and have proven to be just as effective as in 1D

The Basis for a 3D Euler

Solver

We indicate the discretization of space-time which

forms the basis for a 3D Euler solver currently under

development. The extension of the CE/SE method

to three spatial dimensions follows reasoning similar

to that used when extending the 1D solver to the

2D case (see the previous section). In the 3D case,

the unsteady Euler equations of a perfect gas con-

sist of five independent equations, m = 1, 2, 3, 4, 5.

There are three spatial components of the gradient

of each Um (i.e., um_, Um_ and umz, where x, y and z

are Cartesian coordinates for the 3D space). When
piecewise linear variation with space and time are as-

sumed for the numerical solution, as is done in the

1D and 2D cases, and after the differential equation
is assumed valid at each mesh point, there remain

four sets of independent marching variables at each

mesh point. It follows that four sets of conserva-

tion conditions are required at each mesh point to

construct the non-dissipative 3D solver. Hence, four
conservation elements must be defined for each mesh

point. Just as a triangle was the polygon sharing its
bounding edges with three neighbors, so a tetrahe-

dron is the polyhedron sharing its bounding surfaces
with four neighbors.

In the 2D case, referring to Figs. 4.1 and 4.2,

GFAB, GBCD and GDEF are the spatial projec-
tions of the CEs associated with G _. The CEs in
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the3Dcasecanbeconstructedin analogousfash-
ion.ConsiderthetetrahedronABCD with centroid

G, and the tetrahedron ABCP with centroid H,
depicted in Fig. 5.1. They share the face ABC.

The polyhedron GABCH is then defined as the spa-

tial projection of a CE associated with a point G _.

The CE is thus a right cylinder in space-time, with

GABCH as its spatial base. The point G is the spa-

tial image of the mesh point G _, which is displaced

temporally from G by half a time step.

In similar fashion, three additional CEs associ-

ated with the mesh point G _ can be constructed

by considering in turn three tetrahedra that share

with ABCD one of its other three faces. Thus the

numerical solution at G _ can be determined from a

knowledge of the solution at the four mesh points
(one of which is H) which are the centroids of the

tetrahedra sharing a face with ABCD. This forms

the basis of a non-dissipative 3D Euler solver.

Just as the structured mesh of Fig. 4.1 is obtain-

able by sectioning the parallelograms of Fig. 4.1 into
triangles, so it is possible to construct a structured

mesh of tetrahedra by sectioning a mesh of paral-

lelepipeds. Details of the construction will be given

in a future paper. Again, the extension to a space-
time mesh built from an unstructured tetrahedral

spatial mesh is simple.

6 Computational Examples

Shock Tube with Non-Reflecting

Computational Boundaries

The CE/SE computationalresults are presented for

an extended Sod's shock tube problem [51], in which

the shock tube problem is extended by imposing a
non-reflecting boundary condition at each end of the

computational domain. The challenge of the non-
reflective boundary condition is no less difficult than

that of capturing the shock and the contact disconti-

nuity. First, the flow under consideration is subsonic

throughout and the treatment of the non-reflecting
boundary condition for a subsonic flow is more dif-

ficult than that for a supersonic flow. Second, this
difficulty is exacerbated by the existence of a shock

and a contact discontinuity, which must be allowed
to exit the domain without reflection.

Flow of an ideal gas with specific-heat ratio 7 -

1.4 is considered in an infinite shock-tube. The ini-

tial condition, at time t = 0, is (p, v,p) - (1, 0, 1)

if z < 0, and (p,v,p) = (0.125,0,0.1)if z > 0.

Here, p, v,p denote the density, velocity, and pres-
sure of the fluid, respectively. A uniform space-time

mesh with Az -- 0.01 and At -- 0.004 (correspond-

ing to a maximum Courant number of about 0.88)

is used over the computational domain defined by

-0.5 < z < 0.5 and t > 0. The settings e - 0.5 and

a- 1 are used for the artificial dissipation parame-
ters. Note that the results are obtained without the

need of any local mesh-refinement techniques or any
time-step tuning.

The non-reflecting boundary conditions used are
n TTn-1/2 n n-l/2

(i) Uj - "i-1/2 and (U.)j = (Uar)j_l/2 if (j,n).

is a mesh point on the right boundary, and (ii)
n _ TTn-1/2 n

Uj "j+1/2 and (Ux)j = (Uz) n-1/2j+x/2 if (j,n) is
a mesh point on the left boundary. The reasons

why such trivial extrapolations can serve so well

as non-reflecting boundary conditions in the CE/SE
method are explained in a separate paper [12].

Figs. 6.1-6.3 show the numerical solution (tri-
angular data points) compared with the analyti-

cal solution (unbroken line) at three different times,
namely, t = 0.2, 0.4 and 0.6. It is seen that ex-

cellent agreement is obtained between the numerical

results and the analytical solution. In particular,

as seen in Fig. 6.1, the shock wave discontinuity is
resolved almost within one mesh interval and the

contact discontinuity is resolved in four mesh inter-

vals. Fig. 6.2 shows that by t = 0.4, the numerically

computed shock wave has passed cleanly through the
right boundary, with no spurious reflections. Simi-

larly, Fig. 6.3 shows that by t -- 0.6, the contact

discontinuity has passed through the right bound-

ary, while the expansion region has partially passed

through the left boundary. Agreement with the ex-
act solution continues to be excellent.

6.2 Convection-Diffusion Examples

The CE/SE computations described in this sub-

section were originally presented in [8], where an
implicit CE/SE solver for the convection-diffusion

equation ut + au_-/zu_ = 0 (_u > 0) was devel-

oped. The solver, termed the a-p(I1) solver, is an

extension of the a scheme, which is the CE/SE solver
for ut + au. = 0 . The examples below help show

that the scheme is accurate over the whole Reynolds

number range, from pure diffusion to convection-
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dominatedsolutions.

Pure Diffusion. Weconsidera specialcaseof
the convection-diffusionequationwith a - 0 and
/_- 1, in the domain0 < z < 1 andt > 0. The

initial/boundary conditions completing the prob-

lem specification are (i) u(O,t) - u(1,t) - 0 for

t > 0, (ii) u(z,O) - 2z for 0 < z < 0.5, and (iii)
u(z,O)- 2(1-x)for 0.5 < x _< 1. The solution

u(z, t) exhibits the diffusive decay of the initial saw-

tooth shape. An exact series solution is available, see

for e.g.p.15 of [52]. For the CE/SE computation,
uniform mesh intervals Ax -- 0.02 and At -- 0.005

are used. Fig. 6.4 shows the time-slice at t - 0.05,

comparing numerical and exact solutions, and also

showing the error scaled with the peak exact value

at that time level. The maximum error magnitude

is seen to be about 0.5% of the peak solution value.

At t- 1 (not shown), when the peak solution value
has dwindled to about 4 x 10 -5, the maximum er-

ror magnitude is about 0.15% of the peak solution
value.

Boundary Layer_ Re = 100. We next consider

the problem defined for the convection-diffusion

equation in the domain 0 < z < 1 and t > 0 by the

conditions (i) u(O,t) - 0 for t _> 0, (ii) u(1,t) - 1
for t _> 0, and (iii) u(z,0) - z for 0 < z _< 1. The
'steady-state' or time-asymptotic limit of the solu-

tion is u(x, oo)- [exp(az/p)- 1] / [exp(a//_)- 1].

The case a - 1,/_ - 0.01 (i.e. Re - 100) is consid-

ered, which leads to a steady-state boundary layer
at x - 1. Uniform mesh intervals Az -- 0.0025 and

At -- 0.002 are used, so that the Courant number is

0.8. Fig. 6.5 shows the computed and exact steady-

state limits, together with the error. The boundary
layer is seen to be well resolved, with the maximum

magnitude of the error being about 1% of the solu-
tion peak.

6.3 Unstable ZND Detonation Wave

1 The Piston Problems

We consider 1D and 2D ZND detonation wave

problems. The governing equations consist of the

Euler equations together with an equation for the
reactant concentration, with a stiff source term in
it. For details of the treatment of source terms in

the present CE/SE method, we refer the reader to
[18].

The initial condition of the present calculation is

a long tube filled with reactant with a piston on one

end moving at a constant speed into the quiescent

reactant. Here, we use the piston face as the origin

of the coordinate system. In this coordinate frame,
reactant is charged into a closed-end tube at a con-

stant speed. A shock wave is reflected on the closed

end to ignite the reactant.

The parameters of the flow field in the present

calculation are set as chemical potential q0 = 50, ac-

tivation energy E + - 50, specific heat ratio 7 = 1.2,

and the over drive coefficient f = 1.6. According

to the classical theory for detonation instability, the
detonation wave becomes unstable and a longitudi-

nal wave bouncing between the piston and the shock

front should be observed. In this calculation, only 5
mesh nodes are used in the each half-reaction zone.

In Fig. 6.6(a), we show the temporal evolution of the

pressure level at the shock front. The first pressure

jump in the figure is caused by the start-up process

of the pushing piston. After the first pressure jump,

the flow field settles down and the instability waves

gradually built up. After 40 time units, a remark-

able instability wave occurs. In about 60 time unit,

there are about 8 pressure peaks. This numerical

solution is in excellent agreement with the results

reported by Fickett and Wood [53].

2 Numerical structure for two-dimensional
detonations

Unstable detonation waves obtained with the 2D

Euler equations plus a ZND equation are computed

by S.T. Yu and S.J. Park, in work yet to be pub-

lished. Fig. 6.6(b) is a Schlieren-type image of deto-

nation waves, especially plotted two periods for pres-

sure. A detonation is traveling from the top to the

bottom and the flowfield is composed of: (i) the qui-

escent state of the reactant before the shock, (ii) a
von Neumann spike with finite rate reaction, and

(iii) the equilibrium state after the reaction zone.
The two-dimensional cellular structure of detona-

tion waves is of concern: that is, the wave patterns

that arise when the flow parameters are chosen such

that the flow field is unstable. The parameters of

the flow field in the present calculation are set as

q0 = 50, E + = 50, 7 = 1.2, and the over drive coef-

ficient f -1.6. According to the classical theory for

detonation instability, an unstable detonation wave

should be obtained with these parameters.

In this calculation, 20 mesh nodes are used in

the half reaction zone (260 mesh cells covered the
width of the channel). The calculation of two-

dimensional detonation wave is initiated by placing a
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one-dimensionalsolutionon a two-dimensional mesh

with periodic boundary conditions along the left and

right of the flow. Without artificial perturbation,
the shock front quickly becomes unstable under flow

conditions receptive for instability. Crisp cellular
structure is observed after transverse waves cause

the shock front to be curved. This figure shows that
regular mach stem cell structure exists between two

curved strong incident shocks and that peak pressure
zone is around triple points in the cellular structure
for unstable detonations.

The results compared favorably with the previ-
ously reported data. These results show that the

CE/SE method is a very accurate method for direct

calculations of propagating detonation waves. Fig-
ure 6.6(b) is obtained at t= 12.5sec.

6.4 Diffraction of a Shock Wave

around a Wedge

According to the experimental shadowgraph results

shown in [54], when a plane shock wave of M, - 1.3

is moving over the beginning of a finite wedge of
semi-vertex angle 0 - 26.565 °, an ordinary Mach

reflection is generated. As the shock wave passes
the base, the flow separates to form vortex sheets at

the sharp corners. Further interaction produces an

increasingly elaborate pattern of shock waves, slip
lines and vortices.

As reported in [22, 26], this flowfield is simulated

using the CE/SE Euler solver. By virtue of the

symmetry in the solution, attention is restricted to

the upper half of the domain. The extent of the

computational domain is set based on an estima-

tion from Fig. 522 in [54]. The shock wave is at

x - -0.5 at t - 0. The numerical boundary con-

dition imposed on the vertical wall of the wedge is

described in [25]. Numerical solutions at eight time

levels (t -- 0.725, 0.9075, 1.2125, 1.55, 1.825, 2.1375,

2.4875; and 2.9475), obtained by using two subdo-

mains with 321x89 and 209x34 mesh points, and
with At = 0.0025, are shown in Fig. 6.7. It should
be pointed out that the upper and lower walls of the

channel shown in the shadowgraphs of [54] are actu-

ally further apart than the top and bottom edges of
the shadowgraphs. Therefore some flow phenomena

that are seen in Fig. 6.7, in the region near the upper

wall, are lost in shadowgraphs, especially at the 4th
time level. Comparisons of the computed solutions

with experimental pictures of [54] have shown an ex-

cellent agreement in general flow features except for

those phenomena induced by the effect of viscosity.

The shock waves, slip lines and vortices are captured
very well.

Implosion/Explosion of Polygo-
nal Shock Waves in a Box

The 2-D CE/SE Euler solver has been used in [27]

to solve a problem studied in [55], concerning the
implosion/explosion of a polygonal shock wave in a

square box. In addition to the early stage of the
implosion/explosion process, the later development

of the process, which was not studied in [55], is also
simulated in [27]. The computation further demon-

strates the robustness of the CE/SE Euler scheme
in handling discontinuous flows.

A uniformly distributed 241x241 grid is utilized

in the computational domain, which is a square de-

fined by -2 < x < 2 and -2 < y < 2. The initial

shock wave configuration is a polygon, the geomet-

ric center of which coincides with that of the square.

Inside the polygon is a low pressure region, with a
pressure ratio of 10 across the shock. The radius of

the circumscribed circle of the polygon is selected to
be 0.8v/_ for all shapes of the polygon. In the nu-

merical scheme, the two parameters e and a are set

to be 0.5 and 1 respectively, everywhere in the com-

putational domain for all cases, and the maximum

Courant number is always kept at a value of 0.9.

In one set of computations, the early flowfield is

studied for polygonal shock waves with initial shapes

of an equilateral triangle, a square, and a pentagon.
The density contour plots at different time levels are

shown in Fig. 6.8. Wave patterns similar to those

captured in Figs. 1-5 of [55] using a TVD method

on a 359x359 grid are clearly shown in the CE/SE
solutions, displaying detailed features such as Mach

stems and the newly-developed smaller polygons.

In another computation, the implosion/explosion
of a hexagonal shock wave is simulated until the re-

implosion of the shock wave is observed in the box.

More complex flow phenomena can be seen in the

density contour plots of Fig. 6.9, including the reflec-
tions of shock waves, shock-shock interaction, and

shock-contact surface interaction. It is interesting
to note that the shape of the contact surface cen-

tered at the origin of the box remains unchanged
even after the passage of shock waves.
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6.6 Examples from Computational

Aeroacoustics

The CE/SE computational examples we describe in

the next two subsections were reported in [16] and

[15]. The investigations in [16] and [15] found the

CE/SE Euler scheme to be capable of handling the

complete spectrum of flows, from small-amplitude
linear acoustic waves, all the way to nonlinear or

even discontinuous waves (shocks). Through nu-

merical experiments in computational aeroacoustics,

the following salient properties of the CE/SE Eu-

ler scheme emerge: (i)The CE/SE scheme possesses

very low dispersion error and yields high resolution

results comparable to that of a high order compact

difference scheme, although nominally the CE/SE

scheme is only of 2nd order accuracy. (ii) In gen-

eral, the numerical non-reflecting boundary condi-

tion applicable to the CE/SE scheme is genuinely
multi-dimensional, and can be implemented in a sim-

ple and elegant way without resorting to the com-

plexities of characteristic forms or buffer zones. (iii)

The CE/SE scheme is both a CFD ( Computa-

tional Fluid Dynamics) and a CAA (Computational
Aeroacoustics) scheme, capable of handling contin-

uous and discontinuous flows. It thus represents a
unique numerical technique for flows where sound

waves and shocks and their interactions are impor-
tant.

It is well-known that in CAA, the non-reflecting
boundary condition plays a dominant role in the fi-

nal numerical results. In general, there are three

ways to impose the non-reflecting boundary condi-
tions, namely,

(i) to apply 1-D characteristic variables (Riemann

invariants) in the direction normal to the boundary,

(ii) to minimize spurious numerical reflections

from the boundaries by inserting a buffer zone with
increased numerical damping,

(iii) to apply an asymptotic analytical solution at
the boundaries.

In the new CE/SE scheme, none of the above

complex treatments of non-reflecting boundary con-
ditions is needed. Instead, one of several possible

simple non-reflecting boundary conditions is"

(um_)jn, k - (umv )j_k -- O, m -- 1, 2, 3, 4,

while (Urn)jn,k is defined by zeroth order extrapola-
tion from the interior neighbors. In general, the

consequent reflection amounts to about 1% of the

strength of the incident waves.

6.7 Multiple interaction of strong
vortex and shocks

In the first example, the multiple interaction of a
strong vortex and shocks is considered. It is demon-

strated as a typical example to show that the CE/SE
scheme is capable of handling not only .the linear

waves but also the highly nonlinear waves as well. It
is well-known that interaction between a vortex and

a shock may generates acoustic waves. To our knowl-

edge, researches including both experimental and

numerical computation, are mostly concentrated in
a single interaction between a vortex and a normal

shock. In this problem, we intend to show the capa-

bility of the CE/SE method in handling complicated

wave interactions. Although there are no existing
experimental results for comparison, our numerical

result appears consistent with the physical phenom-

ena. A grid of 401 x 101 is employed in this problem

with Ax- Ay- 1. The inflow boundary condition
is given as a supersonic flow of Mach 2.9"

u0-2.9, v0=0, p0-1/1.4, p0-1

boundary condition at the top is an inclined flow-

ut - 2.6193, vt - -0.50632, pt - 1.5282, pt - 1.7000

The outflow boundary condition is of the non-

reflecting variety and the bottom boundary is a solid
reflecting wall. Then, a steady oblique shock is
formed with 29 ° inclination and reflected at the bot-

tom wall. The flow with shocks is precalculated un-
til a steady state is reached. It is then used as the

background mean flow for further computation. At

t = 0, a strong Lamb's vortex is placed at x - 22,
y = 60. The following is a brief description for a

stationary Gaussian type of Lamb vortex. In polar
coordinates, the azimuthal and radial velocities uo
are given as

--at 2

uo -- --re , ur -- O.

With the prescribed uo and ur, using the momentum
and energy equations:

dp pu_
-- = -- (6.1)dr r

"r p__+ug
(7- 1)p T - H0 (6.2)
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whereH0 is a predescribed total enthalpy, By sub-

stituting (6.2) into (6.1), a differential equation for p
is obtained and can be easily solved by numerical in-

tegration. Consequently, p and the entire stationary
flow field is determined. The solution of this station-

ary vortex can then be superimposed to any uniform

mean flow with a given streamwise velocity u0. In
the problem we consider, u0 and ur are converted
to:

U 6ye -at2 --6xe -at2

where 6- 0.3 is a given amplitude factor, while p

and p, as shown above, are functions of r, with

= u0t) +

This stationary vortex is thus superimposed to the

background mean flow. The vortex is large and

strong, since the pressure in the vortex center dips
down to about 7°£ of its circumferential value. Due

to the presence of shocks, the CE/SE scheme is re-

quired to have enough numerical damping. For this
purpose, a weighted average index a - 2 and nu-

merical dissipation factor e = 0.5 are chosen. The

boundary conditions are the same as for the ini-

tial oblique shocks computation. We choose a =

z,_____2At -- 0.2 and run 900 time steps. Fig.6.10784

demonstrates the interaction process at different

time t=2,20,38,56,74,92,110,128,146, and 180. The

vortex propagates downstream while remaining in-
tact before colliding with the oblique shock. With

further propagation, it begins to interact with the

first oblique shock ( Fig.6.10 (2-3)). During the
interaction, both vortex and shock are deformed or

distorted. The straight oblique shock first changes to
S shape and then recovers to its original straightline

shape. At Stage 2, the collision disrupts the vortex.

The ruptured vortex can no longer remain intact and

begins to release its kinetic energy in the form of

strong (non-linear) acoustic waves (pressure ampli-

tude is as high as 17% of the field maximum). The
phenomenon is consistent with others' experiments
and numerical computations for a normal shock -

vortex interaction. In Fig. 6.10 (3-4), the disrupted
eddy continues to emit acoustic waves. Some of the

waves pass through the reflected shock and are re-

flected from the solid wall. In Fig.6.10 (5), the weak-
ening vortex is flushed further down and collides

with the second oblique shock. It is then further

disrupted and releases more energy in the form of

acoustic waves. At Stages 6,7 and 8, more acous-
tic waves are emitted and the vortex reduces its size

( to about 1/4 of its original size) and kinetic en-

ergy as well. In Fig.6.10 (9-10), the vortex is flushed

out from the computational domain along with the

acoustic waves it generates, and the oblique shocks
resume their original shapes.

Acoustic Pulse / Shock-Wave In-
teraction

In order to demonstrate the capability of the CE/SE
scheme to handle interactions of acoustic waves and

shock waves, we describe an example of a weak

acoustic pulse wave passing through a strong shock.
We use a mesh of 200 × 200 nodes. The domain

is centered at the origin (0,0), with an extent of

-100 < x < 100 and-100 < y < 100. A steady

obliqueshock at a position along a diagonal of the

computational domain is precalculated to form part
of the initial condition for the computation. The

initial conditions of an isolated acoustic pulse are

superimposed on this precalculated shock to form

the initial condition of the given problem. The data

upstream and downstream of the shock are respec-
tively

uo - 2.378056, vo- O,

po - 1 and po - 0.7142857;

and

u0 -- 2.1017481, v0 - 0.4062729,

P0 - 1.5807555 and p0- 1.3713613.

A weak acoustic pulse propagating across a strong

shock is considered. An acoustic pulse, initially cen-
tered at (x0, y0) - (-75, 0), with initial data

U* -- Y* -- O_ p* - p* - ce-_[(.-_o)_+(y-yo) _]

is superimposed on the mean flow, where the ini-

tial pulse amplitude e = 0.001 and a - (1n2)/9. It
is observed that the oblique shock strength is three

orders of magnitude larger than the initial ampli-
tude of the acoustic pulse. The pulse propagates in

all directions with the speed of sound, while being

carried downstream by the mean flow. During the

computation, the non-reflecting boundary condition
described above is enforced at all the four sides of
the computational domain.

For such an interaction between a weak (linear)
wave and a discontinuous wave, the theoretical exact

solution is not available. HoWever, the numerical re-

sults obtained with the CE/SE scheme demonstrate

physically plausible phenomena. Fig. 6.11 illustrates

the isobars at various time steps. At first, the acous-

tic pulse is blown downstream and propagates freely.
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Asthepulsecollideswith thestrongobliqueshock,
theshockispracticallyunaffected,whiletheacous-
tic pulseringisdistortedin its passagethroughthe
shock,dueto differentspeedsofsoundandflowve-
locitiesoneithersideof theobliqueshock.

In otherexamplesdescribedin [9], [15]and[161,
theinteractionsof astrong(i.e.nonlinear)acoustic
pulse,andof weakandstrongvorticalandentropy
pulseswith a strongshockwerecomputed.Cur-
rently,theCE/SEmethodisbeingappliedtobench-
markproblemsin CAAandto supersonicjet noise
computations,andhasprovedto beexceptionally
accurate.

utilizedin the computationaldomainspecifiedby
0<x_< 2, 0_<y < 2, and 0___ z < 2. The sym-

metry inherent in the problem is utilized, so that

the initial shock wave configuration is an eighth of a
sphere, whose geometric center is at x -- y -- z = 0

and whose radius is 0.8v/3. The interior of the sphere
is a low pressure region with a pressure ratio of 10

across the shock. The density and pressure contour

plots at different time levels obtained using a time
step At -- 0.005 are shown in Fig. 6.14. The shock

wave, contact surface, and expansion wave in Fig.
6.14 display physics similar to that seen in the 2-

D implosion/explosion problem. More detailed de-

scription of the flow physics will be provided in [?].

Three-Dimensional Inviscid Flow

Examples 7 Summary and Conclusions

The CE/SE 3D Euler solver, which is an extension

of the 1D Euler solver in the same way as is the 2D

Euler solver, has recently been developed by X.Y.
Wang and S.C. Chang. See Section 5 for the con-

ceptual description of flux conservation using tetra-

hedrons in 3D. Details of the solver will be presented

in a paper under preparation [?]. Some preliminary

numerical results are presented in the following. In
these results, a structured mesh of tetrahedrons is

used, with c_ -- 1 and e -- 0.5 in the entire domain.

(a) Oblique shock problem: To help with vali-
dation, the 3D Euler code is used to solve the 2D

oblique shock reflection problem previously solved

with the 2D Euler solver in [7]. The structured mesh

consists of 42x14x14x6 tetrahedral spatial cells in a

domain 0 _< x _< 4, 0 _< y < 1, and 0 _< z < 1.

The steady-state solution obtained with a time step
At -- 0.012 is shown in Fig. 6.12, in which the den-

sity distribution in the entire domain and density
contours at the plane y = 0 are plotted.

(b) Flow past a ramp: For further validation, the

3D Euler code is used to solve a 2D supersonic flow

of Moo = 2.2 past a ramp with a compression angle
t? -- 12 °, which has previously been solved using the
2D Euler solver in [22]. 40xl0xl0x6 tetrahedral cells

are used in a domain-0.2 < x _< 1.8, 0 < y <

1, and 0 _< z _< 1, and a time step At = 0.005
is used. The steady-state density distribution and

density contours at the surface y - 0 are shown in
Fig. 6.13.

(c) Implosion/Explosion of a spherical shock wave

in a cubical box. 41x41x41x6 tetrahedral cells are

In the present article, we reviewed the method of

space-timeconservation element and solution ele-

ment (the CE/SE method, for short) for the nu-
merical solution of conservation laws. We described

several CE/SE schemes for computing fluid flows,
and touched upon other CE/SE schemes and exten-

sions. Our descriptions emphasized the geometry of
the space-time discretization.

An ideal solver for smooth flows must be neutrally
stable, explicit and two-level, and must be such that

the discrete equations are invariant under space-time
inversion. The CE/SE non-dissipative Euler solvers

for isentropic flows meet all these requirements. In

the present article, we described the non-dissipative
1D and 2D Euler solvers in terms of the conserva-

tion of piecewise linear space-time fluxes over dis-

crete space-time volumes. Thus, given the space-

time discretization, the schemes have a simple spec-
ification in terms of flux conservation. When shock

waves are present in the solution, numerical dissi-
pation must be introduced into numerical schemes

in a controllable fashion, to model the irreversibilo

ity in the exact solution. We described the shock-

capturing 1D Euler solver, which is a modification

of the non-dissipative solver. The added numeri-

cal dissipation has a simple geometric description
and a straightforward generalization to the 2D case.

The Navier-Stokes solvers, not described here, re-

duce to the non-dissipative solvers when the physi-
cal viscosity vanishes, and hence the latter is never

overwhelmed by numerical dissipation.

The key strategies that enable the CE/'SE schemes
to avoid the limitations of the upwind schemes are:
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(i) Themoregeneralformof theconservationlaws,
i.e., the integralform, is castin a formin which
spaceandtimearetreatedonanequalfooting.This
givesflexibilityin theshapeof thespace-timecon-
servationelements,whichis usefulfordefiningCEs
when,fore.g.,sourcesarepresentin theCE.(ii) A
staggeredspace-timemeshisemployed.Thisresults
in thesimpleststencil.It alsoobviatestheneedfor
interpolationoffluxesat theinterfacebetweenCEs.
Thus,thereisnoneedfor anapproximateRiemann
solver.Hence,characteristics-basedupwind-biasing
methods,whicharecomplicatedandstrictlyvalid
onlyforsmoothsolutions,areavoided.Thereisthus
alsonocompromisein the symmetryof treatment
of thespatialfluxes.Thisalsohasimplicationsfor
flowsin multiplespatialdimensions.Forthecom-
putationof suchflows,upwindtechniquesmustuse
directionalsplittingwith its attendantdifficulties.
TheCE/SEmethodin multiplespatialdimensions,
Ontheotherhand,doesnot involveanydirectional
splitting.(iii) Theflowpropertygradientis treated
asanadditionalunknownin the CE/SEschemes.
Therefore,thereisnoneedforreconstructionofthe
flowgradientbypolynomialcurvefittingoverneigh-
boringmeshpoints,andfor thesubsequentuseof
complicatedflux limiters.(iv) Space-timefluxesare
conservedat boththelocalandgloballevel.The
conditionof flux conservation,ratherthananyex-
trapolation,linksthesolutionat ameshpointwith
itsneighborsattheprevioustimelevel.Thisempha-
sisontheintegralconservationlawiscriticalforac-
curateflowsimulations,particularlyif theyinvolve
longmarchingtimesand/orregionsofrapidchange
(e.g.,boundarylayersandshocks).

Wereproducedhereseveralnumericalresultsob-
tainedwith variousCE/SEflowsolvers.There-
sultsincludeda demonstrationof extremelysimple
yet highlyeffectivenon-reflectingboundarycondi-
tionsfor the extendedSod'sshock-tubeproblem.
TheCE/SEsolverforthescalarconvection-diffusion
equationwasshownto beaccuratein all Reynolds
numberregimes.TheCE/SEsolverforthe1Dand
2D Eulerequationswith sourcetermssimulating
detonationwasalsoshown.Wereproducednumer-
ical solutionsobtainedwith the 2DCE/SEEuler
solver,includingtheprocessofdiffractionofashock
wavearoundawedgeandtheimplosion/explosionof
a polygonalshock,wavein abox,aswellascompu-
tationalaeroacousticphenomenainvolvingtheinter-
actionof strongshocksandweakacousticsaswell
asstrongshocksandstrongvortices.Theresults
reproducedhereareonlysomeofthedifficultprob-
lemsreadilysolvedwith CE/SEschemes;see[1-31]

formoreexamples.

Weremarkherethat theCE/SEschemesdevel-
opedthusfar arecharacterizedby simplicity,gen-
eralityof applicabilityandsecond-orderaccuracy
in spaceandtime. TheSimplestpossiblestencils
areemployed.The2Dspatialmeshis constructed
fromtriangles,andthe3Dspatialmeshwill becon-
structedfromtetrahedra.Trianglesandtetrahedra
arethesimplestpolytopesin 2Dand3D,respec-
tively.The1Dand2DEulersolversbeararemark-
ableresemblanceto thesolversof the 1Dand2D
scalarconvection-diffusionequations,respectively,
with the discreteequationsin the formertwo be-
ingmatrixversionsof the scalarequationsin the
lattertwo. All of theaboveschemesarecharacter-
izedbyvirtuallythesameproperties.Furthermore,
theviscousflowsolversaredesignedtoreducetothe
respectivenon-dissipativesolverswhenthephysical
viscosityvanishes.TheCE/SEmethodthusrep-
resentsa newunifiedframeworkfor thenumerical
solutionof conservationlaws.
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Figure 4-.1-- A spatial domain formed from congruent u'ian_es,

showing thespatial projections of the mesh points
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Fig. 6.11 Isobars for interaction of"an acoustic pulse with a shock wave
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Figure 6.12 The oblique shock problem.

Figure 6.13 Flow past a 3-D ramp.
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(a) t=0.4 (b) t=0.55

(c) t=0.85 (d) t=l. 15

(a) Density contours

(a) t=0.4 (b) t=0.55

(c) t=0.85 (d) t=1.15

(b) Pressure contours

Figure 6.14 Implosion/explosion of a spherical shock wave at different time levels.
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